Презентация на тему "Внешние устройства ЭВМ" по информатике в формате powerpoint. В данной презентации для школьников 7-9 классов рассмотрены такие вопросы, как состав внешних устройств ЭВМ, внешние ЗУ, классификация носителей данных, надежность хранения данных. Автор презентации: Орел Анна Владимировна, учитель информатики.
Фрагменты из презентации
Состав внешних устройств ЭВМ
Внешние устройства делятся на два вида:
внешние ЗУ
устройства ввода-вывода (УВВ): клавиатура, дисплей, принтер, мышь, адаптер каналов связи (КС) и др.
Внешние ЗУ
Предназначены для долговременного хранения данных
Они энергонезависимы
Имеют намного больший объем, чем основная память ПК
Жесткие диски (Hard Drive) являются основным видом компьютерных накопителей.
Среди потребительских качеств жесткого диска можно выделить главные:
емкость (объем),
используемый интерфейс,
скорость обмена данными,
надежность,
шумность,
тепловыделение.
Накопитель на жестких магнитных дисках содержит четыре основных элемента (блока): пакет дисковых пластин на вращающейся оси, головки чтения-записи, позиционер (актюатор), контроллер.
Дисковая пластина состоит из основы и магнитного покрытия, на которое записываются данные.
Основу изготавливают из алюминиевых сплавов, а в последнее время из керамики или стеклянных компонентов.
Схема хранения данных на жестком диске
Данные хранятся на пластинах в виде концентрических дорожек, каждая из которых разделена на секторы по 512 байт, состоящие из горизонтально ориентированных доменов.
Ориентация доменов в магнитном слое служит для распознавания двоичной информации (0 или 1).
Размер доменов определяет плотность записи данных.
В настоящее время жесткие диски производят семь компаний: Fujitsu, Hitachi, Maxtor, Samsung, Seagate, Toshiba и Western Digital.
Практически все современные жесткие диски (в просторечии традиционно именуемые ≪винчестерами≫) выпускаются по технологии, использующей магниторезистивный эффект
Магнитно-резистивные головки
Принцип работы магнитно-резистивной (MR) головки при чтении данных состоит в заметном изменении сопротивления протекающему электрическому току при изменении напряженности магнитного поля.
Элемент чтения головки представляет собой сверхтонкую пленку из специального материала, который меняет сопротивление в зависимости от ориентации магнитных доменов на поверхности вращающегося диска.
Ориентация доменов определяется тем, какой бит (0 или 1) записан в данный элемент.
Постоянное воздействие температуры преждевременно выводит головку из строя
Удар жесткого диска может привести к появлению внутри отколовшихся микрочастиц, которые повреждают головку
Характеристики жестких дисков
В жестких дисках с интерфейсом АТА обычно используют 1 — 5 пластин, с интерфейсом SCSI — до 10.
Предпочтительнее приобретать жесткие диски с наивысшей удельной плотностью — меньшее число пластин упрощает механику и повышает надежность работы, а также снижает стоимость.
Плотность записи и емкость диска тесно связаны между собой.
Поверхностная плотность записи зависит от расстояния между дорожками (поперечная плотность) и минимального размера магнитного домена (продольная плотность).
Обобщающим критерием выступает плотность записи на единицу площади диска или емкость пластины.
Чем выше плотность записи, тем больше скорость обмена данными между головками и буфером (внутренняя скорость передачи данных).
Скорость вращения жесткого диска в основном влияет на сокращение среднего времени доступа (поиска).
Сегодня стандартом частоты вращения для жестких дисков
с интерфейсом АТА считается 5400/7200 оборотов в минуту (среднее время доступа 9-10 мс),
с интерфейсом SCSI — 7200/10000 оборотов в минуту (среднее время доступа 7-8 мс).
Надежность хранения данных
Обычным показателем для дисков с интерфейсом IDE считается наработка на отказ 300 000-500 000 часов, с интерфейсом SCSI — до 1 000 000 часов.
Для конкретного экземпляра он означает, что за период в 1000 часов его работы вероятность выхода из строя составит 0,5% (при показателе наработки на отказ 200 000 часов).
Для повышения надежности большинство производителей применяют в жестких дисках различные вариации технологии S.M.A.R.T. (Self-Monitoring Analysis and Reporting Technology — технология самотестирования и анализа).
Обычно предусматривается автоматическая проверка целостности данных, состояния поверхности пластин, перенос информации с критических участков на нормальные и другие операции без участия пользователя.
В случае нарастания фатальных ошибок программа своевременно выдаст сообщение о необходимости принятия срочных мер по спасению данных.
Технология S.M.A.R.T.
Для анализа надежности жесткого диска используются две группы параметров.
Первая характеризует параметры естественного старения жесткого диска:
число циклов включения/выключения диска;
накопленное число оборотов двигателя за время работы;
количество перемещений головок.
Вторая группа параметров характеризует текущее состоянии накопителя:
высота головки над поверхностью диска;
скорость обмена данными между дисками и буфером (кэш-памятью);
количество переназначений плохих секторов (когда вместо испорченного сектора подставляется свободный исправный);
количество ошибок поиска и другие.
Технология Data Lifeguard
Спецификация S.M.A.R.T. лишь информирует пользователя о появившейся проблеме. Решение же самой проблемы в основном возлагается на пользователя.
Технология Data Lifeguard (Western Digital) — это встроенная система ранней диагностики, изоляция поврежденных участков рабочей поверхности и переноса данных с них в специально выделенные резервные области.
Она производит ежедневную автоматическую профилактику рабочей поверхности, сканируя, выделяя и восстанавливая сектора, потенциально подверженные потере данных.
Ленточные накопители
Начали использоваться с 1972 года (время появления стримера)
Достоинства:
Низкая стоимость хранения единицы данных;
Надежность.
Стримеры широко используют в системах разведки, безопасности, связи, навигации и в других областях, где надо непрерывно записывать огромные массивы данных при безусловном обеспечении надежности хранения.