Оценка точности результатов одного прямого измерения
Пусть при повторении измерений в одних и тех же условиях 3 – 4 раза получили одинаковое значение Х = Х0. Можно ли утверждать, что Хист = Х0? Нет. Данный результат означает лишь, что истинное значение Х заключено в интервале
X = X0 ± ΔX,
(1.2)
где погрешность ΔX определяется в данном случае воспроизводящимися от опыта к опыту ошибками, обычно связанными с неточностью измерительных приборов или метода измерений. Такую погрешность ΔХ, как уже отмечалось, называют систематической. Проведение дальнейших измерений в этих условиях бессмысленно. Результат измерений записывается в виде равенства (1.2), где ΔХ = ΔХсист. Для более точного определения физической величины Х в данном случае необходимо изменить постановку самого опыта: взять прибор более высокого класса точности, улучшить методику измерений и т.п. В простейших случаях ΔХсист определяется 11 погрешностями измерительных приборов, то есть для выверенных приборов – их классом точности.
Пример. При измерении диаметра цилиндра в различных местах штангенциркулем получено одинаковое значение D = 12,5 мм. Абсолютная погрешность штангенциркуля 0,1 мм. Запишите результат измерений и произведите оценку точности измерения.
Результат измерения следует записать так: D = (12,5 ± 0,1) мм. Предельная относительная погрешность технического измерения равна относительной погрешности штангенциркуля д = ΔD / D = 0,1 / 12,5 ⋅ 100% = 0,8%.
Добавил: Basilio (29.08.2010) | Категория: Механика Просмотров: 3172 | Загрузок: 1 | Рейтинг: 0.0/0 | Теги: |
Комментарии (0) | |