Л/Р: Тепловое расширение твердых тел
14.1. Цель работы
Определение температурного коэффициента линейного расширения металлического стержня в некотором интервале температур. 14.2. Содержание работы Тепловое расширение – это изменение размеров тела в процессе его нагревания при постоянном давлении. Причины теплового расширения можно понять, рассматривая классический осциллятор с учетом ангармоничности его колебаний. Ангармоничность колебаний частиц твердого тела обусловлена характером зависимости сил взаимодействия между атомами от расстояния между ними. Независимо от природы сил, возникающих при сближении частиц (атомов или молекул), общий характер их остается одинаковым (рис. 14.1 а) [1]: на относительно больших расстояниях появляются силы притяжения Fn , быстро увеличивающиеся с уменьшением расстояния r между частицами; на малых расстояниях возникают силы отталкивания Fот , которые с уменьшением r увеличиваются значительно быстрее, чем Fn. С повышением температуры частицы начинают колебаться около положений равновесия. Допустим частица 1 (рис. 14.2) закреплена неподвижно и колеблется лишь частица 2 вдоль оси х. Колеблющаяся частица обладает кинетической энергией, достигающей наибольшего значения Eк в момент прохождения положения равновесия О. На рис. 14.2 энергия Eк отложена вверх от дна потенциальной ямы авс. При движении частицы 2 влево от положения равновесия кинетическая энергия расходуется на преодоление сил отталкивания ее от частицы 1 и переходит в потенциальную энергию взаимодействия частицы. Отклонение влево происходит до тех пор, пока вся кинетическая энергия частиц Eк не перейдет в потенциальную, которая увеличивается до U1 =Eк , а частица 2 сместится предельно влево на расстояние х1. Если бы частица 2 совершала гармонические колебания, то сила, возникающая при смещении х частицы из положения равновесия, удовлетворяла бы закону Гука F = -k · x (14.1) а изменение потенциальной энергии U(х)U(x) = (k · x2 ) / 2 (14.2) описывалось бы симметричной параболой а′ в с′ (см. рис. 14.2). Потому отклонения х1 и х2 были бы одинаковыми по величине и середина размаха АВ совпала бы с положением равновесия О. Нагревание тела в этом случае не могло бы вызвать его расширения, так как с увеличением температуры происходило бы лишь увеличение амплитуды колебаний частицы, а средние расстояния между ними оставались бы неизменными. В действительности же потенциальная кривая авс (см. рис. 14.2) является несимметричной, т.к. ее левая ветвь ва поднимается круче правой ветви вс. Для учета асимметрии потенциальной кривой необходимо ввести дополнительный член (g · x3 ) / 3, тогда (14.1) и (14.2) примут следующий вид: При х > 0 член ( g · x3 ) / 3 вычитается, а при х < 0, он прибавляется к (k · x2) /2, что приводит к асимметрии потенциальной кривой. Несимметричный характер потенциальной кривой приводит к тому, что отклонения частицы 2 вправо и влево оказываются неодинаковыми: вправо частица отклоняется сильнее, чем влево (см. рис. 14.2). Вследствие этого среднее положение частицы 2 (точка О1) уже не совпадает с положением равновесия О, а смещается вправо. Это соответствует увеличению среднего расстояния между частицами на <х>. Таким образом, причиной теплового расширения тел является ангармонический характер колебаний частиц твердого тела, обусловленный ассиметрией кривой зависимости энергии взаимодействия частиц от расстояния между ними. Количественно тепловое расширение твердых тел характеризуется температурным коэффициентом линейного расширения α, который показывает, на какую долю первоначальной длины l изменяются размеры тела при нагревании его на один градус, и определяется соотношением α = (1 / l) · (dl / dT) (14.4) Коэффициент α зависит от природы T твердых тел и вследствие анизотропии кристаллов может быть различным в различных направлениях. Коэффициент линейного расширения α в области низких температур зависит также от температуры: вблизи абсолютного нуля коэффициент α уменьшается с понижением температуры пропорционально кубу температуры, стремясь к нулю при абсолютном нуле.α = (1 / l) · (Δl / ΔT) (14.5) где l - длина тела при некоторой начально ∆T температуре Т1; ∆l - удлинение тела при нагревании его от температуры Т1 до Т2 (∆Т = Т2 - Т 1). По формуле (14.5) и определяют температурный коэффициент линейного расширения металлического стержня в данной работе. 14.3. Описание лабораторной установки Исследуемый стержень 1 вместе с цилиндрическим нагревателем (рис. 14.3) помещен на столике 2 горизонтального оптиметра между контактными измерительными наконечниками 3 и 4, надеваемыми на штифты трубки оптиметра и пиноли 6. Контакт 4 может перемещаться при вращении винта 8 и крепится винтами 5 и 7 неподвижно, а другой контакт 3 перемещается по мере удлинения стержня при нагревании. Перемещение этого контакта определяется по шкале, которую можно наблюдать в окуляр 9. Для освещения шкалы в поле зрения служат осветитель 11 и зеркало 10. ВНИМАНИЕ! НЕЛЬЗЯ КАСАТЬСЯ РУКАМИ ПОВЕРХНОСТЕЙ ОПТИЧЕСКИХ ЭЛЕМЕНТОВ (линз, зеркала) ПРИБОРА! Электрический нагреватель 1 включается в сеть через трансформатор. Для измерения температуры исследуемого стержня используется точечный терморезистор, вмонтированный в стержень. Контакты терморезистора выведены на столик и подключены к измерителю сопротивления. 14.4. Методика проведения эксперимента и обработка результатов 14.4.1. Методика эксперимента Для определения температурного коэффициента линейного расширения по формуле (14.5) необходимо измерить длину стержня l при некоторой температуре (например, комнатной), определить удлинение его при нагревании и соответствующее этому удлинению изменение температуры. Удлинение стержня определяется по шкале оптиметра. Видимое в окуляр смещение шкалы на одно деление соответствует перемещению измерительного контакта (шрифта) 3, а следовательно, удлинению стержня на 1 мкм. Температура стержня при нагревании определяется по сопротивлению терморезистора (активного полупроводникового элемента, электрическое сопротивление которого зависит от температуры). При нагревании сопротивление R терморезистора уменьшается. График зависимости R(T) для используемого в работе терморезистора приведен на лабораторном столе. Измерив сопротивление R терморезистора, по этому графику можно определить температуру стержня при любом его удлинении.
14.4.3. Обработка результатов измерений
14.5. Перечень контрольных вопросов
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ 1. Епифанов Г.И. Физика твердого тела. – М.: «Высшая школа», 1977. – 288с., §8, 35.
2. Кикоин А.К., Кикоин И.К. Молекулярная физика М.: «Просвещение», 1976. – 432с., §139. Добавил: naddy (13.05.2010) | Категория: Квантовая физика Просмотров: 17122 | Загрузок: 0 | Рейтинг: 5.0/2 | Теги: |
Комментарии (0) | |